Survival Can And Bottle Opener Laguna Hills California

Grocery Store Survival Foods With Long Shelf Life

Survival skills in Laguna Hills are techniques that a person may use in order to sustain life in any type of natural environment or built environment. These techniques are meant to provide basic necessities for human life which include water, food, and shelter. The skills also support proper knowledge and interactions with animals and plants to promote the sustaining of life over a period of time. Practicing with a survival suit An immersion suit, or survival suit is a special type of waterproof dry suit that protects the wearer from hypothermia from immersion in cold water, after abandoning a sinking or capsized vessel, especially in the open ocean.

The Best Survival Of The Fit Test In Orange

Survival skills are often associated with the need to survive in a disaster situation in Laguna Hills .

[1] Survival skills are often basic ideas and abilities that ancients invented and used themselves for thousands of years.

[2] Outdoor activities such as hiking, backpacking, horseback riding, fishing, and hunting all require basic wilderness survival skills, especially in handling emergency situations. Bush-craft and primitive living are most often self-implemented, but require many of the same skills.

Survival mode

Grocery Store Survival Foods With Long Shelf Life Jump to navigation Jump to search A germination rate experiment Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants.[1] Closely related fields include plant morphology (structure of plants), plant ecology (interactions with the environment), phytochemistry (biochemistry of plants), cell biology, genetics, biophysics and molecular biology. Fundamental processes such as photosynthesis, respiration, plant nutrition, plant hormone functions, tropisms, nastic movements, photoperiodism, photomorphogenesis, circadian rhythms, environmental stress physiology, seed germination, dormancy and stomata function and transpiration, both parts of plant water relations, are studied by plant physiologists. The field of plant physiology includes the study of all the internal activities of plants—those chemical and physical processes associated with life as they occur in plants. This includes study at many levels of scale of size and time. At the smallest scale are molecular interactions of photosynthesis and internal diffusion of water, minerals, and nutrients. At the largest scale are the processes of plant development, seasonality, dormancy, and reproductive control. Major subdisciplines of plant physiology include phytochemistry (the study of the biochemistry of plants) and phytopathology (the study of disease in plants). The scope of plant physiology as a discipline may be divided into several major areas of research. Five key areas of study within plant physiology. First, the study of phytochemistry (plant chemistry) is included within the domain of plant physiology. To function and survive, plants produce a wide array of chemical compounds not found in other organisms. Photosynthesis requires a large array of pigments, enzymes, and other compounds to function. Because they cannot move, plants must also defend themselves chemically from herbivores, pathogens and competition from other plants. They do this by producing toxins and foul-tasting or smelling chemicals. Other compounds defend plants against disease, permit survival during drought, and prepare plants for dormancy, while other compounds are used to attract pollinators or herbivores to spread ripe seeds. Secondly, plant physiology includes the study of biological and chemical processes of individual plant cells. Plant cells have a number of features that distinguish them from cells of animals, and which lead to major differences in the way that plant life behaves and responds differently from animal life. For example, plant cells have a cell wall which restricts the shape of plant cells and thereby limits the flexibility and mobility of plants. Plant cells also contain chlorophyll, a chemical compound that interacts with light in a way that enables plants to manufacture their own nutrients rather than consuming other living things as animals do. Thirdly, plant physiology deals with interactions between cells, tissues, and organs within a plant. Different cells and tissues are physically and chemically specialized to perform different functions. Roots and rhizoids function to anchor the plant and acquire minerals in the soil. Leaves catch light in order to manufacture nutrients. For both of these organs to remain living, minerals that the roots acquire must be transported to the leaves, and the nutrients manufactured in the leaves must be transported to the roots. Plants have developed a number of ways to achieve this transport, such as vascular tissue, and the functioning of the various modes of transport is studied by plant physiologists. Fourthly, plant physiologists study the ways that plants control or regulate internal functions. Like animals, plants produce chemicals called hormones which are produced in one part of the plant to signal cells in another part of the plant to respond. Many flowering plants bloom at the appropriate time because of light-sensitive compounds that respond to the length of the night, a phenomenon known as photoperiodism. The ripening of fruit and loss of leaves in the winter are controlled in part by the production of the gas ethylene by the plant. Finally, plant physiology includes the study of plant response to environmental conditions and their variation, a field known as environmental physiology. Stress from water loss, changes in air chemistry, or crowding by other plants can lead to changes in the way a plant functions. These changes may be affected by genetic, chemical, and physical factors. Latex being collected from a tapped rubber tree. Main article: Phytochemistry The chemical elements of which plants are constructed—principally carbon, oxygen, hydrogen, nitrogen, phosphorus, sulfur, etc.—are the same as for all other life forms animals, fungi, bacteria and even viruses. Only the details of the molecules into which they are assembled differs. Despite this underlying similarity, plants produce a vast array of chemical compounds with unique properties which they use to cope with their environment. Pigments are used by plants to absorb or detect light, and are extracted by humans for use in dyes. Other plant products may be used for the manufacture of commercially important rubber or biofuel. Perhaps the most celebrated compounds from plants are those with pharmacological activity, such as salicylic acid from which aspirin is made, morphine, and digoxin. Drug companies spend billions of dollars each year researching plant compounds for potential medicinal benefits. Further information: Plant nutrition Plants require some nutrients, such as carbon and nitrogen, in large quantities to survive. Some nutrients are termed macronutrients, where the prefix macro- (large) refers to the quantity needed, not the size of the nutrient particles themselves. Other nutrients, called micronutrients, are required only in trace amounts for plants to remain healthy. Such micronutrients are usually absorbed as ions dissolved in water taken from the soil, though carnivorous plants acquire some of their micronutrients from captured prey. The following tables list element nutrients essential to plants. Uses within plants are generalized. Space-filling model of the chlorophyll molecule. Anthocyanin gives these pansies their dark purple pigmentation. Main article: Biological pigment Among the most important molecules for plant function are the pigments. Plant pigments include a variety of different kinds of molecules, including porphyrins, carotenoids, and anthocyanins. All biological pigments selectively absorb certain wavelengths of light while reflecting others. The light that is absorbed may be used by the plant to power chemical reactions, while the reflected wavelengths of light determine the color the pigment appears to the eye. Chlorophyll is the primary pigment in plants; it is a porphyrin that absorbs red and blue wavelengths of light while reflecting green. It is the presence and relative abundance of chlorophyll that gives plants their green color. All land plants and green algae possess two forms of this pigment: chlorophyll a and chlorophyll b. Kelps, diatoms, and other photosynthetic heterokonts contain chlorophyll c instead of b, red algae possess chlorophyll a. All chlorophylls serve as the primary means plants use to intercept light to fuel photosynthesis. Carotenoids are red, orange, or yellow tetraterpenoids. They function as accessory pigments in plants, helping to fuel photosynthesis by gathering wavelengths of light not readily absorbed by chlorophyll. The most familiar carotenoids are carotene (an orange pigment found in carrots), lutein (a yellow pigment found in fruits and vegetables), and lycopene (the red pigment responsible for the color of tomatoes). Carotenoids have been shown to act as antioxidants and to promote healthy eyesight in humans. Anthocyanins (literally "flower blue") are water-soluble flavonoid pigments that appear red to blue, according to pH. They occur in all tissues of higher plants, providing color in leaves, stems, roots, flowers, and fruits, though not always in sufficient quantities to be noticeable. Anthocyanins are most visible in the petals of flowers, where they may make up as much as 30% of the dry weight of the tissue.[2] They are also responsible for the purple color seen on the underside of tropical shade plants such as Tradescantia zebrina. In these plants, the anthocyanin catches light that has passed through the leaf and reflects it back towards regions bearing chlorophyll, in order to maximize the use of available light Betalains are red or yellow pigments. Like anthocyanins they are water-soluble, but unlike anthocyanins they are indole-derived compounds synthesized from tyrosine. This class of pigments is found only in the Caryophyllales (including cactus and amaranth), and never co-occur in plants with anthocyanins. Betalains are responsible for the deep red color of beets, and are used commercially as food-coloring agents. Plant physiologists are uncertain of the function that betalains have in plants which possess them, but there is some preliminary evidence that they may have fungicidal properties.[3] A mutation that stops Arabidopsis thaliana responding to auxin causes abnormal growth (right) Plants produce hormones and other growth regulators which act to signal a physiological response in their tissues. They also produce compounds such as phytochrome that are sensitive to light and which serve to trigger growth or development in response to environmental signals. Main article: Plant hormone Plant hormones, known as plant growth regulators (PGRs) or phytohormones, are chemicals that regulate a plant's growth. According to a standard animal definition, hormones are signal molecules produced at specific locations, that occur in very low concentrations, and cause altered processes in target cells at other locations. Unlike animals, plants lack specific hormone-producing tissues or organs. Plant hormones are often not transported to other parts of the plant and production is not limited to specific locations. Plant hormones are chemicals that in small amounts promote and influence the growth, development and differentiation of cells and tissues. Hormones are vital to plant growth; affecting processes in plants from flowering to seed development, dormancy, and germination. They regulate which tissues grow upwards and which grow downwards, leaf formation and stem growth, fruit development and ripening, as well as leaf abscission and even plant death. The most important plant hormones are abscissic acid (ABA), auxins, ethylene, gibberellins, and cytokinins, though there are many other substances that serve to regulate plant physiology. Main article: Photomorphogenesis While most people know that light is important for photosynthesis in plants, few realize that plant sensitivity to light plays a role in the control of plant structural development (morphogenesis). The use of light to control structural development is called photomorphogenesis, and is dependent upon the presence of specialized photoreceptors, which are chemical pigments capable of absorbing specific wavelengths of light. Plants use four kinds of photoreceptors:[1] phytochrome, cryptochrome, a UV-B photoreceptor, and protochlorophyllide a. The first two of these, phytochrome and cryptochrome, are photoreceptor proteins, complex molecular structures formed by joining a protein with a light-sensitive pigment. Cryptochrome is also known as the UV-A photoreceptor, because it absorbs ultraviolet light in the long wave "A" region. The UV-B receptor is one or more compounds not yet identified with certainty, though some evidence suggests carotene or riboflavin as candidates.[4] Protochlorophyllide a, as its name suggests, is a chemical precursor of chlorophyll. The most studied of the photoreceptors in plants is phytochrome. It is sensitive to light in the red and far-red region of the visible spectrum. Many flowering plants use it to regulate the time of flowering based on the length of day and night (photoperiodism) and to set circadian rhythms. It also regulates other responses including the germination of seeds, elongation of seedlings, the size, shape and number of leaves, the synthesis of chlorophyll, and the straightening of the epicotyl or hypocotyl hook of dicot seedlings. The poinsettia is a short-day plant, requiring two months of long nights prior to blooming. Main article: Photoperiodism Many flowering plants use the pigment phytochrome to sense seasonal changes in day length, which they take as signals to flower. This sensitivity to day length is termed photoperiodism. Broadly speaking, flowering plants can be classified as long day plants, short day plants, or day neutral plants, depending on their particular response to changes in day length. Long day plants require a certain minimum length of daylight to starts flowering, so these plants flower in the spring or summer. Conversely, short day plants flower when the length of daylight falls below a certain critical level. Day neutral plants do not initiate flowering based on photoperiodism, though some may use temperature sensitivity (vernalization) instead. Although a short day plant cannot flower during the long days of summer, it is not actually the period of light exposure that limits flowering. Rather, a short day plant requires a minimal length of uninterrupted darkness in each 24-hour period (a short daylength) before floral development can begin. It has been determined experimentally that a short day plant (long night) does not flower if a flash of phytochrome activating light is used on the plant during the night. Plants make use of the phytochrome system to sense day length or photoperiod. This fact is utilized by florists and greenhouse gardeners to control and even induce flowering out of season, such as the Poinsettia. Phototropism in Arabidopsis thaliana is regulated by blue to UV light.[5] Main article: Ecophysiology Paradoxically, the subdiscipline of environmental physiology is on the one hand a recent field of study in plant ecology and on the other hand one of the oldest.[1] Environmental physiology is the preferred name of the subdiscipline among plant physiologists, but it goes by a number of other names in the applied sciences. It is roughly synonymous with ecophysiology, crop ecology, horticulture and agronomy. The particular name applied to the subdiscipline is specific to the viewpoint and goals of research. Whatever name is applied, it deals with the ways in which plants respond to their environment and so overlaps with the field of ecology. Environmental physiologists examine plant response to physical factors such as radiation (including light and ultraviolet radiation), temperature, fire, and wind. Of particular importance are water relations (which can be measured with the Pressure bomb) and the stress of drought or inundation, exchange of gases with the atmosphere, as well as the cycling of nutrients such as nitrogen and carbon. Environmental physiologists also examine plant response to biological factors. This includes not only negative interactions, such as competition, herbivory, disease and parasitism, but also positive interactions, such as mutualism and pollination. Main articles: Tropism and Nastic movement Plants may respond both to directional and non-directional stimuli. A response to a directional stimulus, such as gravity or sunlight, is called a tropism. A response to a nondirectional stimulus, such as temperature or humidity, is a nastic movement. Tropisms in plants are the result of differential cell growth, in which the cells on one side of the plant elongates more than those on the other side, causing the part to bend toward the side with less growth. Among the common tropisms seen in plants is phototropism, the bending of the plant toward a source of light. Phototropism allows the plant to maximize light exposure in plants which require additional light for photosynthesis, or to minimize it in plants subjected to intense light and heat. Geotropism allows the roots of a plant to determine the direction of gravity and grow downwards. Tropisms generally result from an interaction between the environment and production of one or more plant hormones. Nastic movements results from differential cell growth (e.g. epinasty and hiponasty), or from changes in turgor pressure within plant tissues (e.g., nyctinasty), which may occur rapidly. A familiar example is thigmonasty (response to touch) in the Venus fly trap, a carnivorous plant. The traps consist of modified leaf blades which bear sensitive trigger hairs. When the hairs are touched by an insect or other animal, the leaf folds shut. This mechanism allows the plant to trap and digest small insects for additional nutrients. Although the trap is rapidly shut by changes in internal cell pressures, the leaf must grow slowly to reset for a second opportunity to trap insects.[6] Powdery mildew on crop leaves Main article: Phytopathology Economically, one of the most important areas of research in environmental physiology is that of phytopathology, the study of diseases in plants and the manner in which plants resist or cope with infection. Plant are susceptible to the same kinds of disease organisms as animals, including viruses, bacteria, and fungi, as well as physical invasion by insects and roundworms. Because the biology of plants differs with animals, their symptoms and responses are quite different. In some cases, a plant can simply shed infected leaves or flowers to prevent the spread of disease, in a process called abscission. Most animals do not have this option as a means of controlling disease. Plant diseases organisms themselves also differ from those causing disease in animals because plants cannot usually spread infection through casual physical contact. Plant pathogens tend to spread via spores or are carried by animal vectors. One of the most important advances in the control of plant disease was the discovery of Bordeaux mixture in the nineteenth century. The mixture is the first known fungicide and is a combination of copper sulfate and lime. Application of the mixture served to inhibit the growth of downy mildew that threatened to seriously damage the French wine industry.[7] Further information: History of botany Jan Baptist van Helmont. Sir Francis Bacon published one of the first plant physiology experiments in 1627 in the book, Sylva Sylvarum. Bacon grew several terrestrial plants, including a rose, in water and concluded that soil was only needed to keep the plant upright. Jan Baptist van Helmont published what is considered the first quantitative experiment in plant physiology in 1648. He grew a willow tree for five years in a pot containing 200 pounds of oven-dry soil. The soil lost just two ounces of dry weight and van Helmont concluded that plants get all their weight from water, not soil. In 1699, John Woodward published experiments on growth of spearmint in different sources of water. He found that plants grew much better in water with soil added than in distilled water. Stephen Hales is considered the Father of Plant Physiology for the many experiments in the 1727 book;[8] though Julius von Sachs unified the pieces of plant physiology and put them together as a discipline. His Lehrbuch der Botanik was the plant physiology bible of its time.[9] Researchers discovered in the 1800s that plants absorb essential mineral nutrients as inorganic ions in water. In natural conditions, soil acts as a mineral nutrient reservoir but the soil itself is not essential to plant growth. When the mineral nutrients in the soil are dissolved in water, plant roots absorb nutrients readily, soil is no longer required for the plant to thrive. This observation is the basis for hydroponics, the growing of plants in a water solution rather than soil, which has become a standard technique in biological research, teaching lab exercises, crop production and as a hobby. One of the leading journals in the field is Plant Physiology, started in 1926. All its back issues are available online for free.[1] Many other journals often carry plant physiology articles, including Physiologia Plantarum, Journal of Experimental Botany, American Journal of Botany, Annals of Botany, Journal of Plant Nutrition and Proceedings of the National Academy of Sciences. Further information: Agriculture and Horticulture In horticulture and agriculture along with food science, plant physiology is an important topic relating to fruits, vegetables, and other consumable parts of plants. Topics studied include: climatic requirements, fruit drop, nutrition, ripening, fruit set. The production of food crops also hinges on the study of plant physiology covering such topics as optimal planting and harvesting times and post harvest storage of plant products for human consumption and the production of secondary products like drugs and cosmetics. Off Grid Tools Survival Axe Elite With Sheath

Planning an Outdoor Survival Trip

Jump to navigation Jump to search Astronauts participating in tropical survival training at an Air Force Base near the Panama Canal, 1963. From left to right are an unidentified trainer, Neil Armstrong, John H. Glenn, Jr., L. Gordon Cooper, and Pete Conrad. Survival training is important for astronauts, as a launch abort or misguided reentry could potentially land them in a remote wilderness area. Survival skills are techniques that a person may use in order to sustain life in any type of natural environment or built environment. These techniques are meant to provide basic necessities for human life which include water, food, and shelter. The skills also support proper knowledge and interactions with animals and plants to promote the sustaining of life over a period of time. Survival skills are often associated with the need to survive in a disaster situation.[1] Survival skills are often basic ideas and abilities that ancients invented and used themselves for thousands of years.[2] Outdoor activities such as hiking, backpacking, horseback riding, fishing, and hunting all require basic wilderness survival skills, especially in handling emergency situations. Bush-craft and primitive living are most often self-implemented, but require many of the same skills. Main article: Wilderness medical emergency A first aid kit containing equipment to treat common injuries and illness First aid (wilderness first aid in particular) can help a person survive and function with injuries and illnesses that would otherwise kill or incapacitate him/her. Common and dangerous injuries include: The survivor may need to apply the contents of a first aid kit or, if possessing the required knowledge, naturally occurring medicinal plants, immobilize injured limbs, or even transport incapacitated comrades. Main article: Bivouac shelter Shelter built from tarp and sticks. Pictured are displaced persons from the Sri Lankan Civil War A shelter can range from a natural shelter, such as a cave, overhanging rock outcrop, or fallen-down tree, to an intermediate form of man-made shelter such as a debris hut, tree pit shelter, or snow cave, to completely man-made structures such as a tarp, tent, or longhouse. Making fire is recognized in the sources as significantly increasing the ability to survive physically and mentally. Lighting a fire without a lighter or matches, e.g. by using natural flint and steel with tinder, is a frequent subject of both books on survival and in survival courses. There is an emphasis placed on practicing fire-making skills before venturing into the wilderness. Producing fire under adverse conditions has been made much easier by the introduction of tools such as the solar spark lighter and the fire piston. To start a fire you’ll need some sort of heat source hot enough to start a fire, kindling, and wood. Starting a fire is really all about growing a flame without putting it out in the process. One fire starting technique involves using a black powder firearm if one is available. Proper gun safety should be used with this technique to avoid injury or death. The technique includes ramming cotton cloth or wadding down the barrel of the firearm until the cloth is against the powder charge. Next, fire the gun up in a safe direction, run and pick up the cloth that is projected out of the barrel, and then blow it into flame. It works better if you have a supply of tinder at hand so that the cloth can be placed against it to start the fire.[3] Fire is presented as a tool meeting many survival needs. The heat provided by a fire warms the body, dries wet clothes, disinfects water, and cooks food. Not to be overlooked is the psychological boost and the sense of safety and protection it gives. In the wild, fire can provide a sensation of home, a focal point, in addition to being an essential energy source. Fire may deter wild animals from interfering with a survivor, however wild animals may be attracted to the light and heat of a fire. Hydration pack manufactured by Camelbak A human being can survive an average of three to five days without the intake of water. The issues presented by the need for water dictate that unnecessary water loss by perspiration be avoided in survival situations. The need for water increases with exercise.[4] A typical person will lose minimally two to maximally four liters of water per day under ordinary conditions, and more in hot, dry, or cold weather. Four to six liters of water or other liquids are generally required each day in the wilderness to avoid dehydration and to keep the body functioning properly.[5] The U.S. Army survival manual does not recommend drinking water only when thirsty, as this leads to underhydrating. Instead, water should be drunk at regular intervals.[6][7] Other groups recommend rationing water through "water discipline".[8] A lack of water causes dehydration, which may result in lethargy, headaches, dizziness, confusion, and eventually death. Even mild dehydration reduces endurance and impairs concentration, which is dangerous in a survival situation where clear thinking is essential. Dark yellow or brown urine is a diagnostic indicator of dehydration. To avoid dehydration, a high priority is typically assigned to locating a supply of drinking water and making provision to render that water as safe as possible. Recent thinking is that boiling or commercial filters are significantly safer than use of chemicals, with the exception of chlorine dioxide.[9][10][11] Culinary root tubers, fruit, edible mushrooms, edible nuts, edible beans, edible cereals or edible leaves, edible moss, edible cacti and algae can be gathered and if needed, prepared (mostly by boiling). With the exception of leaves, these foods are relatively high in calories, providing some energy to the body. Plants are some of the easiest food sources to find in the jungle, forest or desert because they are stationary and can thus be had without exerting much effort.[12] Skills and equipment (such as bows, snares and nets) are necessary to gather animal food in the wild include animal trapping, hunting, and fishing. Food, when cooked in canned packaging (e.g. baked beans) may leach chemicals from their linings [13]. Focusing on survival until rescued by presumed searchers, the Boy Scouts of America especially discourages foraging for wild foods on the grounds that the knowledge and skills needed are unlikely to be possessed by those finding themselves in a wilderness survival situation, making the risks (including use of energy) outweigh the benefits.[14] Cockroaches[15], flies [16]and ants[17] can contaminate food, making it unsafe for consumption. Celestial navigation: using the Southern Cross to navigate South without a compass Those going for trips and hikes are advised[18] by Search and Rescue Services to notify a trusted contact of their planned return time, then notify them of your return. They can tell them to contact the police for search and rescue if you have not returned by a specific time frame (e.g. 12 hours of your scheduled return time). Survival situations can often be resolved by finding a way to safety, or a more suitable location to wait for rescue. Types of navigation include: The mind and its processes are critical to survival. The will to live in a life-and-death situation often separates those that live and those that do not. Stories of heroic feats of survival by regular people with little or no training but a strong will to live are not uncommon. Among them is Juliane Koepcke, who was the sole survivor among the 93 passengers when her plane crashed in the jungle of Peru. Situations can be stressful to the level that even trained experts may be mentally affected. One should be mentally and physically tough during a disaster. To the extent that stress results from testing human limits, the benefits of learning to function under stress and determining those limits may outweigh the downside of stress.[19] There are certain strategies and mental tools that can help people cope better in a survival situation, including focusing on manageable tasks, having a Plan B available and recognizing denial.[20] In a building collapse, it is advised that you[21]: Civilian pilots attending a Survival course at RAF Kinloss learn how to construct shelter from the elements, using materials available in the woodland on the north-east edge of the aerodrome. Main article: Survival kit Often survival practitioners will carry with them a "survival kit". This consists of various items that seem necessary or useful for potential survival situations, depending on anticipated challenges and location. Supplies in a survival kit vary greatly by anticipated needs. For wilderness survival, they often contain items like a knife, water container, fire starting apparatus, first aid equipment, food obtaining devices (snare wire, fish hooks, firearms, or other,) a light, navigational aids, and signalling or communications devices. Often these items will have multiple possible uses as space and weight are often at a premium. Survival kits may be purchased from various retailers or individual components may be bought and assembled into a kit. Some survival books promote the "Universal Edibility Test".[22] Allegedly, it is possible to distinguish edible foods from toxic ones by a series of progressive exposures to skin and mouth prior to ingestion, with waiting periods and checks for symptoms. However, many experts including Ray Mears and John Kallas[23] reject this method, stating that even a small amount of some "potential foods" can cause physical discomfort, illness, or death. Many mainstream survival experts have recommended the act of drinking urine in times of dehydration and malnutrition.[citation needed] However, the United States Air Force Survival Manual (AF 64-4) instructs that this technique is a myth and should never be applied.[citation needed] Several reasons for not drinking urine include the high salt content of urine, potential contaminants, and sometimes bacteria growth, despite urine's being generally "sterile". Many classic cowboy movies, classic survival books and even some school textbooks suggest that sucking the venom out of a snake bite by mouth is an appropriate treatment and/or also for the bitten person to drink their urine after the poisonous animal bite or poisonous insect bite as a mean for the body to provide natural anti-venom. However, venom can not be sucked out and it may be dangerous for a rescuer to attempt to do so. Modern snakebite treatment involves pressure bandages and prompt medical treatment.[24] Media

http://freebreathmatters.pro/orange/

Survival Tips for Survival Of The Fit Test