Survival Case Laguna Niguel California

Grocery Store Survival Foods With Long Shelf Life

Survival skills in Laguna Niguel are techniques that a person may use in order to sustain life in any type of natural environment or built environment. These techniques are meant to provide basic necessities for human life which include water, food, and shelter. The skills also support proper knowledge and interactions with animals and plants to promote the sustaining of life over a period of time. Practicing with a survival suit An immersion suit, or survival suit is a special type of waterproof dry suit that protects the wearer from hypothermia from immersion in cold water, after abandoning a sinking or capsized vessel, especially in the open ocean.

The Best Survival Kit In Orange

Survival skills are often associated with the need to survive in a disaster situation in Laguna Niguel .

[1] Survival skills are often basic ideas and abilities that ancients invented and used themselves for thousands of years.

[2] Outdoor activities such as hiking, backpacking, horseback riding, fishing, and hunting all require basic wilderness survival skills, especially in handling emergency situations. Bush-craft and primitive living are most often self-implemented, but require many of the same skills.

Survival

Grocery Store Survival Foods With Long Shelf Life Jump to navigation Jump to search Astronauts participating in tropical survival training at an Air Force Base near the Panama Canal, 1963. From left to right are an unidentified trainer, Neil Armstrong, John H. Glenn, Jr., L. Gordon Cooper, and Pete Conrad. Survival training is important for astronauts, as a launch abort or misguided reentry could potentially land them in a remote wilderness area. Survival skills are techniques that a person may use in order to sustain life in any type of natural environment or built environment. These techniques are meant to provide basic necessities for human life which include water, food, and shelter. The skills also support proper knowledge and interactions with animals and plants to promote the sustaining of life over a period of time. Survival skills are often associated with the need to survive in a disaster situation.[1] Survival skills are often basic ideas and abilities that ancients invented and used themselves for thousands of years.[2] Outdoor activities such as hiking, backpacking, horseback riding, fishing, and hunting all require basic wilderness survival skills, especially in handling emergency situations. Bush-craft and primitive living are most often self-implemented, but require many of the same skills. Main article: Wilderness medical emergency A first aid kit containing equipment to treat common injuries and illness First aid (wilderness first aid in particular) can help a person survive and function with injuries and illnesses that would otherwise kill or incapacitate him/her. Common and dangerous injuries include: The survivor may need to apply the contents of a first aid kit or, if possessing the required knowledge, naturally occurring medicinal plants, immobilize injured limbs, or even transport incapacitated comrades. Main article: Bivouac shelter Shelter built from tarp and sticks. Pictured are displaced persons from the Sri Lankan Civil War A shelter can range from a natural shelter, such as a cave, overhanging rock outcrop, or fallen-down tree, to an intermediate form of man-made shelter such as a debris hut, tree pit shelter, or snow cave, to completely man-made structures such as a tarp, tent, or longhouse. Making fire is recognized in the sources as significantly increasing the ability to survive physically and mentally. Lighting a fire without a lighter or matches, e.g. by using natural flint and steel with tinder, is a frequent subject of both books on survival and in survival courses. There is an emphasis placed on practicing fire-making skills before venturing into the wilderness. Producing fire under adverse conditions has been made much easier by the introduction of tools such as the solar spark lighter and the fire piston. To start a fire you’ll need some sort of heat source hot enough to start a fire, kindling, and wood. Starting a fire is really all about growing a flame without putting it out in the process. One fire starting technique involves using a black powder firearm if one is available. Proper gun safety should be used with this technique to avoid injury or death. The technique includes ramming cotton cloth or wadding down the barrel of the firearm until the cloth is against the powder charge. Next, fire the gun up in a safe direction, run and pick up the cloth that is projected out of the barrel, and then blow it into flame. It works better if you have a supply of tinder at hand so that the cloth can be placed against it to start the fire.[3] Fire is presented as a tool meeting many survival needs. The heat provided by a fire warms the body, dries wet clothes, disinfects water, and cooks food. Not to be overlooked is the psychological boost and the sense of safety and protection it gives. In the wild, fire can provide a sensation of home, a focal point, in addition to being an essential energy source. Fire may deter wild animals from interfering with a survivor, however wild animals may be attracted to the light and heat of a fire. Hydration pack manufactured by Camelbak A human being can survive an average of three to five days without the intake of water. The issues presented by the need for water dictate that unnecessary water loss by perspiration be avoided in survival situations. The need for water increases with exercise.[4] A typical person will lose minimally two to maximally four liters of water per day under ordinary conditions, and more in hot, dry, or cold weather. Four to six liters of water or other liquids are generally required each day in the wilderness to avoid dehydration and to keep the body functioning properly.[5] The U.S. Army survival manual does not recommend drinking water only when thirsty, as this leads to underhydrating. Instead, water should be drunk at regular intervals.[6][7] Other groups recommend rationing water through "water discipline".[8] A lack of water causes dehydration, which may result in lethargy, headaches, dizziness, confusion, and eventually death. Even mild dehydration reduces endurance and impairs concentration, which is dangerous in a survival situation where clear thinking is essential. Dark yellow or brown urine is a diagnostic indicator of dehydration. To avoid dehydration, a high priority is typically assigned to locating a supply of drinking water and making provision to render that water as safe as possible. Recent thinking is that boiling or commercial filters are significantly safer than use of chemicals, with the exception of chlorine dioxide.[9][10][11] Culinary root tubers, fruit, edible mushrooms, edible nuts, edible beans, edible cereals or edible leaves, edible moss, edible cacti and algae can be gathered and if needed, prepared (mostly by boiling). With the exception of leaves, these foods are relatively high in calories, providing some energy to the body. Plants are some of the easiest food sources to find in the jungle, forest or desert because they are stationary and can thus be had without exerting much effort.[12] Skills and equipment (such as bows, snares and nets) are necessary to gather animal food in the wild include animal trapping, hunting, and fishing. Food, when cooked in canned packaging (e.g. baked beans) may leach chemicals from their linings [13]. Focusing on survival until rescued by presumed searchers, the Boy Scouts of America especially discourages foraging for wild foods on the grounds that the knowledge and skills needed are unlikely to be possessed by those finding themselves in a wilderness survival situation, making the risks (including use of energy) outweigh the benefits.[14] Cockroaches[15], flies [16]and ants[17] can contaminate food, making it unsafe for consumption. Celestial navigation: using the Southern Cross to navigate South without a compass Those going for trips and hikes are advised[18] by Search and Rescue Services to notify a trusted contact of their planned return time, then notify them of your return. They can tell them to contact the police for search and rescue if you have not returned by a specific time frame (e.g. 12 hours of your scheduled return time). Survival situations can often be resolved by finding a way to safety, or a more suitable location to wait for rescue. Types of navigation include: The mind and its processes are critical to survival. The will to live in a life-and-death situation often separates those that live and those that do not. Stories of heroic feats of survival by regular people with little or no training but a strong will to live are not uncommon. Among them is Juliane Koepcke, who was the sole survivor among the 93 passengers when her plane crashed in the jungle of Peru. Situations can be stressful to the level that even trained experts may be mentally affected. One should be mentally and physically tough during a disaster. To the extent that stress results from testing human limits, the benefits of learning to function under stress and determining those limits may outweigh the downside of stress.[19] There are certain strategies and mental tools that can help people cope better in a survival situation, including focusing on manageable tasks, having a Plan B available and recognizing denial.[20] In a building collapse, it is advised that you[21]: Civilian pilots attending a Survival course at RAF Kinloss learn how to construct shelter from the elements, using materials available in the woodland on the north-east edge of the aerodrome. Main article: Survival kit Often survival practitioners will carry with them a "survival kit". This consists of various items that seem necessary or useful for potential survival situations, depending on anticipated challenges and location. Supplies in a survival kit vary greatly by anticipated needs. For wilderness survival, they often contain items like a knife, water container, fire starting apparatus, first aid equipment, food obtaining devices (snare wire, fish hooks, firearms, or other,) a light, navigational aids, and signalling or communications devices. Often these items will have multiple possible uses as space and weight are often at a premium. Survival kits may be purchased from various retailers or individual components may be bought and assembled into a kit. Some survival books promote the "Universal Edibility Test".[22] Allegedly, it is possible to distinguish edible foods from toxic ones by a series of progressive exposures to skin and mouth prior to ingestion, with waiting periods and checks for symptoms. However, many experts including Ray Mears and John Kallas[23] reject this method, stating that even a small amount of some "potential foods" can cause physical discomfort, illness, or death. Many mainstream survival experts have recommended the act of drinking urine in times of dehydration and malnutrition.[citation needed] However, the United States Air Force Survival Manual (AF 64-4) instructs that this technique is a myth and should never be applied.[citation needed] Several reasons for not drinking urine include the high salt content of urine, potential contaminants, and sometimes bacteria growth, despite urine's being generally "sterile". Many classic cowboy movies, classic survival books and even some school textbooks suggest that sucking the venom out of a snake bite by mouth is an appropriate treatment and/or also for the bitten person to drink their urine after the poisonous animal bite or poisonous insect bite as a mean for the body to provide natural anti-venom. However, venom can not be sucked out and it may be dangerous for a rescuer to attempt to do so. Modern snakebite treatment involves pressure bandages and prompt medical treatment.[24] Media Army Gear 10-in-1 Survival And Camping Kit

Survival

Jump to navigation Jump to search A grow light or plant light is an artificial light source, generally an electric light, designed to stimulate plant growth by emitting a light appropriate for photosynthesis. Grow lights are used in applications where there is either no naturally occurring light, or where supplemental light is required. For example, in the winter months when the available hours of daylight may be insufficient for the desired plant growth, lights are used to extend the time the plants receive light. If plants do not receive enough light, they will grow long and spindly.[citation needed] Grow lights either attempt to provide a light spectrum similar to that of the sun, or to provide a spectrum that is more tailored to the needs of the plants being cultivated. Outdoor conditions are mimicked with varying colour, temperatures and spectral outputs from the grow light, as well as varying the lumen output (intensity) of the lamps. Depending on the type of plant being cultivated, the stage of cultivation (e.g. the germination/vegetative phase or the flowering/fruiting phase), and the photoperiod required by the plants, specific ranges of spectrum, luminous efficacy and colour temperature are desirable for use with specific plants and time periods. Russian botanist Andrei Famintsyn was the first to use artificial light for plant growing and research (1868). Grow lights are used for horticulture, indoor gardening, plant propagation and food production, including indoor hydroponics and aquatic plants. Although most grow lights are used on an industrial level, they can also be used in households. According to the inverse-square law, the intensity of light radiating from a point source (in this case a bulb) that reaches a surface is inversely proportional to the square of the surface's distance from the source (if an object is twice as far away, it receives only a quarter the light) which is a serious hurdle for indoor growers, and many techniques are employed to use light as efficiently as possible. Reflectors are thus often used in the lights to maximize light efficiency. Plants or lights are moved as close together as possible so that they receive equal lighting and that all light coming from the lights falls on the plants rather than on the surrounding area. Example of an HPS grow light set up in a grow tent. The setup includes a carbon filter to remove odors, and ducting to exhaust hot air using a powerful exhaust fan. A range of bulb types can be used as grow lights, such as incandescents, fluorescent lights, high-intensity discharge lamps (HID), and light-emitting diodes (LED). Today, the most widely used lights for professional use are HIDs and fluorescents. Indoor flower and vegetable growers typically use high-pressure sodium (HPS/SON) and metal halide (MH) HID lights, but fluorescents and LEDs are replacing metal halides due to their efficiency and economy.[1] Metal halide lights are regularly used for the vegetative phase of plant growth, as they emit larger amounts of blue and ultraviolet radiation.[2][3] With the introduction of ceramic metal halide lighting and full-spectrum metal halide lighting, they are increasingly being utilized as an exclusive source of light for both vegetative and reproductive growth stages. Blue spectrum light may trigger a greater vegetative response in plants.[4][5][6] High-pressure sodium lights are also used as a single source of light throughout the vegetative and reproductive stages. As well, they may be used as an amendment to full-spectrum lighting during the reproductive stage. Red spectrum light may trigger a greater flowering response in plants.[7] If high-pressure sodium lights are used for the vegetative phase, plants grow slightly more quickly, but will have longer internodes, and may be longer overall. In recent years LED technology has been introduced into the grow light market. By designing an indoor grow light using diodes, specific wavelengths of light can be produced. NASA has tested LED grow lights for their high efficiency in growing food in space for extraterrestrial colonization. Findings showed that plants are affected by light in the red, green and blue parts of the visible light spectrum.[8][9] While fluorescent lighting used to be the most common type of indoor grow light, HID lights are now the most popular.[10] High intensity discharge lamps have a high lumen-per-watt efficiency.[11] There are several different types of HID lights including mercury vapor, metal halide, high pressure sodium and conversion bulbs. Metal halide and HPS lamps produce a color spectrum that is somewhat comparable to the sun and can be used to grow plants. Mercury vapor lamps were the first type of HIDs and were widely used for street lighting, but when it comes to indoor gardening they produce a relatively poor spectrum for plant growth so they have been mostly replaced by other types of HIDs for growing plants.[11] All HID grow lights require a ballast to operate, and each ballast has a particular wattage. Popular HID wattages include 150W, 250W, 400W, 600W and 1000W. Of all the sizes, 600W HID lights are the most electrically efficient as far as light produced, followed by 1000W. A 600W HPS produces 7% more light (watt-for-watt) than a 1000W HPS.[11] Although all HID lamps work on the same principle, the different types of bulbs have different starting and voltage requirements, as well as different operating characteristics and physical shape. Because of this a bulb won't work properly unless it's using a matching ballast, even if the bulb will physically screw in. In addition to producing lower levels of light, mismatched bulbs and ballasts will stop working early, or may even burn out immediately.[11] 400W Metal halide bulb compared to smaller incandescent bulb Metal halide bulbs are a type of HID light that emit light in the blue and violet parts of the light spectrum, which is similar to the light that is available outdoors during spring.[12] Because their light mimics the color spectrum of the sun, some growers find that plants look more pleasing under a metal halide than other types of HID lights such as the HPS which distort the color of plants. Therefore, it's more common for a metal halide to be used when the plants are on display in the home (for example with ornamental plants) and natural color is preferred.[13] Metal halide bulbs need to be replaced about once a year, compared to HPS lights which last twice as long.[13] Metal halide lamps are widely used in the horticultural industry and are well-suited to supporting plants in earlier developmental stages by promoting stronger roots, better resistance against disease and more compact growth.[12] The blue spectrum of light encourages compact, leafy growth and may be better suited to growing vegetative plants with lots of foliage.[13] A metal halide bulb produces 60-125 lumens/watt, depending on the wattage of the bulb.[14] They are now being made for digital ballasts in a pulse start version, which have higher electrical efficiency (up to 110 lumens per watt) and faster warmup.[15] One common example of a pulse start metal halide is the ceramic metal halide (CMH). Pulse start metal halide bulbs can come in any desired spectrum from cool white (7000 K) to warm white (3000 K) and even ultraviolet-heavy (10,000 K).[citation needed] Ceramic metal halide (CMH) lamps are a relatively new type of HID lighting, and the technology is referred to by a few names when it comes to grow lights, including ceramic discharge metal halide (CDM),[16] ceramic arc metal halide. Ceramic metal halide lights are started with a pulse-starter, just like other "pulse-start" metal halides.[16] The discharge of a ceramic metal halide bulb is contained in a type of ceramic material known as polycrystalline alumina (PCA), which is similar to the material used for an HPS. PCA reduces sodium loss, which in turn reduces color shift and variation compared to standard MH bulbs.[15] Horticultural CDM offerings from companies such as Philips have proven to be effective sources of growth light for medium-wattage applications.[17] Combination HPS/MH lights combine a metal halide and a high-pressure sodium in the same bulb, providing both red and blue spectrums in a single HID lamp. The combination of blue metal halide light and red high-pressure sodium light is an attempt to provide a very wide spectrum within a single lamp. This allows for a single bulb solution throughout the entire life cycle of the plant, from vegetative growth through flowering. There are potential tradeoffs for the convenience of a single bulb in terms of yield. There are however some qualitative benefits that come for the wider light spectrum. An HPS (High Pressure Sodium) grow light bulb in an air-cooled reflector with hammer finish. The yellowish light is the signature color produced by an HPS. High-pressure sodium lights are a more efficient type of HID lighting than metal halides. HPS bulbs emit light in the yellow/red visible light as well as small portions of all other visible light. Since HPS grow lights deliver more energy in the red part of the light spectrum, they may promote blooming and fruiting.[10] They are used as a supplement to natural daylight in greenhouse lighting and full-spectrum lighting(metal halide) or, as a standalone source of light for indoors/grow chambers. HPS grow lights are sold in the following sizes: 150W, 250W, 400W, 600W and 1000W.[10] Of all the sizes, 600W HID lights are the most electrically efficient as far as light produced, followed by 1000W. A 600W HPS produces 7% more light (watt-for-watt) than a 1000W HPS.[11] A 600W High Pressure Sodium bulbAn HPS bulb produces 60-140 lumens/watt, depending on the wattage of the bulb.[18] Plants grown under HPS lights tend to elongate from the lack of blue/ultraviolet radiation. Modern horticultural HPS lamps have a much better adjusted spectrum for plant growth. The majority of HPS lamps while providing good growth, offer poor color rendering index (CRI) rendering. As a result, the yellowish light of an HPS can make monitoring plant health indoors more difficult. CRI isn't an issue when HPS lamps are used as supplemental lighting in greenhouses which make use of natural daylight (which offsets the yellow light of the HPS). High-pressure sodium lights have a long usable bulb life, and six times more light output per watt of energy consumed than a standard incandescent grow light. Due to their high efficiency and the fact that plants grown in greenhouses get all the blue light they need naturally, these lights are the preferred supplemental greenhouse lights. But, in the higher latitudes, there are periods of the year where sunlight is scarce, and additional sources of light are indicated for proper growth. HPS lights may cause distinctive infrared and optical signatures, which can attract insects or other species of pests; these may in turn threaten the plants being grown. High-pressure sodium lights emit a lot of heat, which can cause leggier growth, although this can be controlled by using special air-cooled bulb reflectors or enclosures. Conversion bulbs are manufactured so they work with either a MH or HPS ballast. A grower can run an HPS conversion bulb on a MH ballast, or a MH conversion bulb on a HPS ballast. The difference between the ballasts is an HPS ballast has an igniter which ignites the sodium in an HPS bulb, while a MH ballast does not. Because of this, all electrical ballasts can fire MH bulbs, but only a Switchable or HPS ballast can fire an HPS bulb without a conversion bulb.[19] Usually a metal halide conversion bulb will be used in an HPS ballast since the MH conversion bulbs are more common. A switchable ballast is an HID ballast can be used with either a metal halide or an HPS bulb of equivalent wattage. So a 600W Switchable ballast would work with either a 600W MH or HPS.[10] Growers use these fixtures for propagating and vegetatively growing plants under the metal halide, then switching to a high-pressure sodium bulb for the fruiting or flowering stage of plant growth. To change between the lights, only the bulb needs changing and a switch needs to be set to the appropriate setting. Two plants growing under an LED grow light LED grow lights are composed of light-emitting diodes, usually in a casing with a heat sink and built-in fans. LED grow lights do not usually require a separate ballast and can be plugged directly into a standard electrical socket. LED grow lights vary in color depending on the intended use. It is known from the study of photomorphogenesis that green, red, far-red and blue light spectra have an effect on root formation, plant growth, and flowering, but there are not enough scientific studies or field-tested trials using LED grow lights to recommended specific color ratios for optimal plant growth under LED grow lights.[20] It has been shown that many plants will grow normally if given both red and blue light.[21][22][23] However, many studies indicate that red and blue light only provides the most cost efficient method of growth, plant growth is still better under light supplemented with green.[24][25][26] White LED grow lights provide a full spectrum of light designed to mimic natural light, providing plants a balanced spectrum of red, blue and green. The spectrum used varies, however, white LED grow lights are designed to emit similar amounts of red and blue light with the added green light to appear white. White LED grow lights are often used for supplemental lighting in home and office spaces. A large number of plant species have been assessed in greenhouse trials to make sure plants have higher quality in biomass and biochemical ingredients even higher or comparable with field conditions. Plant performance of mint, basil, lentil, lettuce, cabbage, parsley, carrot were measured by assessing health and vigor of plants and success in promoting growth. Promoting in profuse flowering of select ornamentals including primula, marigold, stock were also noticed.[27] In tests conducted by Philips Lighting on LED grow lights to find an optimal light recipe for growing various vegetables in greenhouses, they found that the following aspects of light affects both plant growth (photosynthesis) and plant development (morphology): light intensity, total light over time, light at which moment of the day, light/dark period per day, light quality (spectrum), light direction and light distribution over the plants. However it's noted that in tests between tomatoes, mini cucumbers and bell peppers, the optimal light recipe was not the same for all plants, and varied depending on both the crop and the region, so currently they must optimize LED lighting in greenhouses based on trial and error. They've shown that LED light affects disease resistance, taste and nutritional levels, but as of 2014 they haven't found a practical way to use that information.[28] Ficus plant grown under a white LED grow light. The diodes used in initial LED grow light designs were usually 1/3 watt to 1 watt in power. However, higher wattage diodes such as 3 watt and 5 watt diodes are now commonly used in LED grow lights. for highly compacted areas, COB chips between 10 watts and 100 watts can be used. Because of heat dissipation, these chips are often less efficient. LED grow lights should be kept at least 12 inches (30 cm) away from plants to prevent leaf burn.[13] Historically, LED lighting was very expensive, but costs have greatly reduced over time, and their longevity has made them more popular. LED grow lights are often priced higher, watt-for-watt, than other LED lighting, due to design features that help them to be more energy efficient and last longer. In particular, because LED grow lights are relatively high power, LED grow lights are often equipped with cooling systems, as low temperature improves both the brightness and longevity. LEDs usually last for 50,000 - 90,000 hours until LM-70 is reached.[citation needed] Fluorescent grow light Fluorescent lights come in many form factors, including long, thin bulbs as well as smaller spiral shaped bulbs (compact fluorescent lights). Fluorescent lights are available in color temperatures ranging from 2700 K to 10,000 K. The luminous efficacy ranges from 30 lm/W to 90 lm/W. The two main types of fluorescent lights used for growing plants are the tube-style lights and compact fluorescent lights. Fluorescent grow lights are not as intense as HID lights and are usually used for growing vegetables and herbs indoors, or for starting seedlings to get a jump start on spring plantings. A ballast is needed to run these types of fluorescent lights.[18] Standard fluorescent lighting comes in multiple form factors, including the T5, T8 and T12. The brightest version is the T5. The T8 and T12 are less powerful and are more suited to plants with lower light needs. High-output fluorescent lights produce twice as much light as standard fluorescent lights. A high-output fluorescent fixture has a very thin profile, making it useful in vertically limited areas. Fluorescents have an average usable life span of up to 20,000 hours. A fluorescent grow light produces 33-100 lumens/watt, depending on the form factor and wattage.[14] Dual spectrum compact fluorescent grow light. Actual length is about 40 cm (16 in) Standard Compact Fluorescent Light Compact Fluorescent lights (CFLs) are smaller versions of fluorescent lights that were originally designed as pre-heat lamps, but are now available in rapid-start form. CFLs have largely replaced incandescent light bulbs in households because they last longer and are much more electrically efficient.[18] In some cases, CFLs are also used as grow lights. Like standard fluorescent lights, they are useful for propagation and situations where relatively low light levels are needed. While standard CFLs in small sizes can be used to grow plants, there are also now CFL lamps made specifically for growing plants. Often these larger compact fluorescent bulbs are sold with specially designed reflectors that direct light to plants, much like HID lights. Common CFL grow lamp sizes include 125W, 200W, 250W and 300W. Unlike HID lights, CFLs fit in a standard mogul light socket and don't need a separate ballast.[10] Compact fluorescent bulbs are available in warm/red (2700 K), full spectrum or daylight (5000 K) and cool/blue (6500 K) versions. Warm red spectrum is recommended for flowering, and cool blue spectrum is recommended for vegetative growth.[10] Usable life span for compact fluorescent grow lights is about 10,000 hours.[18] A CFL produces 44-80 lumens/watt, depending on the wattage of the bulb.[14] Examples of lumens and lumens/watt for different size CFLs: Cold Cathode Fluorescent Light (CCFL) A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emissionalone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas. The color temperatures of different grow lights Different grow lights produce different spectrums of light. Plant growth patterns can respond to the color spectrum of light, a process completely separate from photosynthesis known as photomorphogenesis.[29] Natural daylight has a high color temperature (approximately 5000-5800 K). Visible light color varies according to the weather and the angle of the Sun, and specific quantities of light (measured in lumens) stimulate photosynthesis. Distance from the sun has little effect on seasonal changes in the quality and quantity of light and the resulting plant behavior during those seasons. The axis of the Earth is not perpendicular to the plane of its orbit around the sun. During half of the year the north pole is tilted towards sun so the northern hemisphere gets nearly direct sunlight and the southern hemisphere gets oblique sunlight that must travel through more atmosphere before it reaches the Earth's surface. In the other half of the year, this is reversed. The color spectrum of visible light that the sun emits does not change, only the quantity (more during the summer and less in winter) and quality of overall light reaching the Earth's surface. Some supplemental LED grow lights in vertical greenhouses produce a combination of only red and blue wavelengths.[30] The color rendering index facilitates comparison of how closely the light matches the natural color of regular sunlight. The ability of a plant to absorb light varies with species and environment, however, the general measurement for the light quality as it affects plants is the PAR value, or Photosynthetically Active Radiation. There have been several experiments using LEDs to grow plants, and it has been shown that plants need both red and blue light for healthy growth. From experiments it has been consistently found that the plants that are growing only under LEDs red (660 nm, long waves) spectrum growing poorly with leaf deformities, though adding a small amount of blue allows most plants to grow normally.[24] Several reports suggest that a minimum blue light requirement of 15-30 µmol·m−2·s−1 is necessary for normal development in several plant species.[23][31][32] LED panel light source used in an experiment on potato plant growth by NASA Many studies indicate that even with blue light added to red LEDs, plant growth is still better under white light, or light supplemented with green.[24][25][26] Neil C Yorio demonstrated that by adding 10% blue light (400 to 500 nm) to the red light (660 nm) in LEDs, certain plants like lettuce[21] and wheat[22] grow normally, producing the same dry weight as control plants grown under full spectrum light. However, other plants like radish and spinach grow poorly, and although they did better under 10% blue light than red-only light, they still produced significantly lower dry weights compared to control plants under a full spectrum light. Yorio speculates there may be additional spectra of light that some plants need for optimal growth.[21] Greg D. Goins examined the growth and seed yield of Arabidopsis plants grown from seed to seed under red LED lights with 0%, 1%, or 10% blue spectrum light. Arabidopsis plants grown under only red LEDS alone produced seeds, but had unhealthy leaves, and plants took twice as long to start flowering compared to the other plants in the experiment that had access to blue light. Plants grown with 10% blue light produced half the seeds of those grown under full spectrum, and those with 0% or 1% blue light produced one-tenth the seeds of the full spectrum plants. The seeds all germinated at a high rate under all light types tested.[23] Hyeon-Hye Kim demonstrated that the addition of 24% green light (500-600 nm) to red and blue LEDs enhanced the growth of lettuce plants. These RGB treated plants not only produced higher dry and wet weight and greater leaf area than plants grown under just red and blue LEDs, they also produced more than control plants grown under cool white fluorescent lamps, which are the typical standard for full spectrum light in plant research.[25][26] She reported that the addition of green light also makes it easier to see if the plant is healthy since leaves appear green and normal. However, giving nearly all green light (86%) to lettuce produced lower yields than all the other groups.[25] The National Aeronautics and Space Administration’s (NASA) Biological Sciences research group has concluded that light sources consisting of more than 50% green cause reductions in plant growth, whereas combinations including up to 24% green enhance growth for some species.[33] Green light has been shown to affect plant processes via both cryptochrome-dependent and cryptochrome-independent means. Generally, the effects of green light are the opposite of those directed by red and blue wavebands, and it's speculated that green light works in orchestration with red and blue.[34] Absorbance spectra of free chlorophyll a (blue) and b (red) in a solvent. The action spectra of chlorophyll molecules are slightly modified in vivo depending on specific pigment-protein interactions. A plant's specific needs determine which lighting is most appropriate for optimum growth. If a plant does not get enough light, it will not grow, regardless of other conditions. Most plants use chlorophyll which mostly reflects green light, but absorbs red and blue light well. Vegetables grow best in strong sunlight, and to flourish indoors they need sufficient light levels, whereas foliage plants (e.g. Philodendron) grow in full shade and can grow normally with much lower light levels. Grow lights usage is dependent on the plant's phase of growth. Generally speaking, during the seedling/clone phase, plants should receive 16+ hours on, 8- hours off. The vegetative phase typically requires 18 hours on, and 6 hours off. During the final, flower stage of growth, keeping grow lights on for 12 hours on and 12 hours off is recommended.[citation needed] In addition, many plants also require both dark and light periods, an effect known as photoperiodism, to trigger flowering. Therefore, lights may be turned on or off at set times. The optimum photo/dark period ratio depends on the species and variety of plant, as some prefer long days and short nights and others prefer the opposite or intermediate "day lengths". Much emphasis is placed on photoperiod when discussing plant development. However, it is the number of hours of darkness that affects a plant’s response to day length.[35] In general, a “short-day” is one in which the photoperiod is no more than 12 hours. A “long-day” is one in which the photoperiod is no less than 14 hours. Short-day plants are those that flower when the day length is less than a critical duration. Long-day plants are those that only flower when the photoperiod is greater than a critical duration. Day-neutral plants are those that flower regardless of photoperiod.[36] Plants that flower in response to photoperiod may have a facultative or obligate response. A facultative response means that a plant will eventually flower regardless of photoperiod, but will flower faster if grown under a particular photoperiod. An obligate response means that the plant will only flower if grown under a certain photoperiod.[37] Main article: Photosynthetically active radiation Weighting factor for photosynthesis. The photon-weighted curve is for converting PPFD to YPF; the energy-weighted curve is for weighting PAR expressed in watts or joules. Lux and lumens are commonly used to measure light levels, but they are photometric units which measure the intensity of light as perceived by the human eye. The spectral levels of light that can be used by plants for photosynthesis is similar to, but not the same as what's measured by lumens. Therefore, when it comes to measuring the amount of light available to plants for photosynthesis, biologists often measure the amount of photosynthetically active radiation (PAR) received by a plant.[38] PAR designates the spectral range of solar radiation from 400 to 700 nanometers, which generally corresponds to the spectral range that photosynthetic organisms are able to use in the process of photosynthesis. The irradiance of PAR can be expressed in units of energy flux (W/m2), which is relevant in energy-balance considerations for photosynthetic organisms. However, photosynthesis is a quantum process and the chemical reactions of photosynthesis are more dependent on the number of photons than the amount of energy contained in the photons.[38] Therefore, plant biologists often quantify PAR using the number of photons in the 400-700 nm range received by a surface for a specified amount of time, or the Photosynthetic Photon Flux Density (PPFD).[38] This is normally measured using mol m−2s−1. According to one manufacturer of grow lights, plants require at least light levels between 100 and 800 μmol m−2s−1.[39] For daylight-spectrum (5800 K) lamps, this would be equivalent to 5800 to 46,000 lm/m2.

http://freebreathmatters.pro/orange/

Survival Tips for Survival Kit