Survival Axe Elite Multi Tool Diamond Bar California

Survival Emergency Camping Hiking Knife Shovel Axe Saw Gear Kit Tools

Survival skills in Diamond Bar are techniques that a person may use in order to sustain life in any type of natural environment or built environment. These techniques are meant to provide basic necessities for human life which include water, food, and shelter. The skills also support proper knowledge and interactions with animals and plants to promote the sustaining of life over a period of time. Practicing with a survival suit An immersion suit, or survival suit is a special type of waterproof dry suit that protects the wearer from hypothermia from immersion in cold water, after abandoning a sinking or capsized vessel, especially in the open ocean.

The Best Survival Dispatch Get Home Bag In Los Angeles

Survival skills are often associated with the need to survive in a disaster situation in Diamond Bar .

[1] Survival skills are often basic ideas and abilities that ancients invented and used themselves for thousands of years.

[2] Outdoor activities such as hiking, backpacking, horseback riding, fishing, and hunting all require basic wilderness survival skills, especially in handling emergency situations. Bush-craft and primitive living are most often self-implemented, but require many of the same skills.


Survival Bracelet With Fire Starter Compass And Whistle Jump to navigation Jump to search A grow light or plant light is an artificial light source, generally an electric light, designed to stimulate plant growth by emitting a light appropriate for photosynthesis. Grow lights are used in applications where there is either no naturally occurring light, or where supplemental light is required. For example, in the winter months when the available hours of daylight may be insufficient for the desired plant growth, lights are used to extend the time the plants receive light. If plants do not receive enough light, they will grow long and spindly.[citation needed] Grow lights either attempt to provide a light spectrum similar to that of the sun, or to provide a spectrum that is more tailored to the needs of the plants being cultivated. Outdoor conditions are mimicked with varying colour, temperatures and spectral outputs from the grow light, as well as varying the lumen output (intensity) of the lamps. Depending on the type of plant being cultivated, the stage of cultivation (e.g. the germination/vegetative phase or the flowering/fruiting phase), and the photoperiod required by the plants, specific ranges of spectrum, luminous efficacy and colour temperature are desirable for use with specific plants and time periods. Russian botanist Andrei Famintsyn was the first to use artificial light for plant growing and research (1868). Grow lights are used for horticulture, indoor gardening, plant propagation and food production, including indoor hydroponics and aquatic plants. Although most grow lights are used on an industrial level, they can also be used in households. According to the inverse-square law, the intensity of light radiating from a point source (in this case a bulb) that reaches a surface is inversely proportional to the square of the surface's distance from the source (if an object is twice as far away, it receives only a quarter the light) which is a serious hurdle for indoor growers, and many techniques are employed to use light as efficiently as possible. Reflectors are thus often used in the lights to maximize light efficiency. Plants or lights are moved as close together as possible so that they receive equal lighting and that all light coming from the lights falls on the plants rather than on the surrounding area. Example of an HPS grow light set up in a grow tent. The setup includes a carbon filter to remove odors, and ducting to exhaust hot air using a powerful exhaust fan. A range of bulb types can be used as grow lights, such as incandescents, fluorescent lights, high-intensity discharge lamps (HID), and light-emitting diodes (LED). Today, the most widely used lights for professional use are HIDs and fluorescents. Indoor flower and vegetable growers typically use high-pressure sodium (HPS/SON) and metal halide (MH) HID lights, but fluorescents and LEDs are replacing metal halides due to their efficiency and economy.[1] Metal halide lights are regularly used for the vegetative phase of plant growth, as they emit larger amounts of blue and ultraviolet radiation.[2][3] With the introduction of ceramic metal halide lighting and full-spectrum metal halide lighting, they are increasingly being utilized as an exclusive source of light for both vegetative and reproductive growth stages. Blue spectrum light may trigger a greater vegetative response in plants.[4][5][6] High-pressure sodium lights are also used as a single source of light throughout the vegetative and reproductive stages. As well, they may be used as an amendment to full-spectrum lighting during the reproductive stage. Red spectrum light may trigger a greater flowering response in plants.[7] If high-pressure sodium lights are used for the vegetative phase, plants grow slightly more quickly, but will have longer internodes, and may be longer overall. In recent years LED technology has been introduced into the grow light market. By designing an indoor grow light using diodes, specific wavelengths of light can be produced. NASA has tested LED grow lights for their high efficiency in growing food in space for extraterrestrial colonization. Findings showed that plants are affected by light in the red, green and blue parts of the visible light spectrum.[8][9] While fluorescent lighting used to be the most common type of indoor grow light, HID lights are now the most popular.[10] High intensity discharge lamps have a high lumen-per-watt efficiency.[11] There are several different types of HID lights including mercury vapor, metal halide, high pressure sodium and conversion bulbs. Metal halide and HPS lamps produce a color spectrum that is somewhat comparable to the sun and can be used to grow plants. Mercury vapor lamps were the first type of HIDs and were widely used for street lighting, but when it comes to indoor gardening they produce a relatively poor spectrum for plant growth so they have been mostly replaced by other types of HIDs for growing plants.[11] All HID grow lights require a ballast to operate, and each ballast has a particular wattage. Popular HID wattages include 150W, 250W, 400W, 600W and 1000W. Of all the sizes, 600W HID lights are the most electrically efficient as far as light produced, followed by 1000W. A 600W HPS produces 7% more light (watt-for-watt) than a 1000W HPS.[11] Although all HID lamps work on the same principle, the different types of bulbs have different starting and voltage requirements, as well as different operating characteristics and physical shape. Because of this a bulb won't work properly unless it's using a matching ballast, even if the bulb will physically screw in. In addition to producing lower levels of light, mismatched bulbs and ballasts will stop working early, or may even burn out immediately.[11] 400W Metal halide bulb compared to smaller incandescent bulb Metal halide bulbs are a type of HID light that emit light in the blue and violet parts of the light spectrum, which is similar to the light that is available outdoors during spring.[12] Because their light mimics the color spectrum of the sun, some growers find that plants look more pleasing under a metal halide than other types of HID lights such as the HPS which distort the color of plants. Therefore, it's more common for a metal halide to be used when the plants are on display in the home (for example with ornamental plants) and natural color is preferred.[13] Metal halide bulbs need to be replaced about once a year, compared to HPS lights which last twice as long.[13] Metal halide lamps are widely used in the horticultural industry and are well-suited to supporting plants in earlier developmental stages by promoting stronger roots, better resistance against disease and more compact growth.[12] The blue spectrum of light encourages compact, leafy growth and may be better suited to growing vegetative plants with lots of foliage.[13] A metal halide bulb produces 60-125 lumens/watt, depending on the wattage of the bulb.[14] They are now being made for digital ballasts in a pulse start version, which have higher electrical efficiency (up to 110 lumens per watt) and faster warmup.[15] One common example of a pulse start metal halide is the ceramic metal halide (CMH). Pulse start metal halide bulbs can come in any desired spectrum from cool white (7000 K) to warm white (3000 K) and even ultraviolet-heavy (10,000 K).[citation needed] Ceramic metal halide (CMH) lamps are a relatively new type of HID lighting, and the technology is referred to by a few names when it comes to grow lights, including ceramic discharge metal halide (CDM),[16] ceramic arc metal halide. Ceramic metal halide lights are started with a pulse-starter, just like other "pulse-start" metal halides.[16] The discharge of a ceramic metal halide bulb is contained in a type of ceramic material known as polycrystalline alumina (PCA), which is similar to the material used for an HPS. PCA reduces sodium loss, which in turn reduces color shift and variation compared to standard MH bulbs.[15] Horticultural CDM offerings from companies such as Philips have proven to be effective sources of growth light for medium-wattage applications.[17] Combination HPS/MH lights combine a metal halide and a high-pressure sodium in the same bulb, providing both red and blue spectrums in a single HID lamp. The combination of blue metal halide light and red high-pressure sodium light is an attempt to provide a very wide spectrum within a single lamp. This allows for a single bulb solution throughout the entire life cycle of the plant, from vegetative growth through flowering. There are potential tradeoffs for the convenience of a single bulb in terms of yield. There are however some qualitative benefits that come for the wider light spectrum. An HPS (High Pressure Sodium) grow light bulb in an air-cooled reflector with hammer finish. The yellowish light is the signature color produced by an HPS. High-pressure sodium lights are a more efficient type of HID lighting than metal halides. HPS bulbs emit light in the yellow/red visible light as well as small portions of all other visible light. Since HPS grow lights deliver more energy in the red part of the light spectrum, they may promote blooming and fruiting.[10] They are used as a supplement to natural daylight in greenhouse lighting and full-spectrum lighting(metal halide) or, as a standalone source of light for indoors/grow chambers. HPS grow lights are sold in the following sizes: 150W, 250W, 400W, 600W and 1000W.[10] Of all the sizes, 600W HID lights are the most electrically efficient as far as light produced, followed by 1000W. A 600W HPS produces 7% more light (watt-for-watt) than a 1000W HPS.[11] A 600W High Pressure Sodium bulbAn HPS bulb produces 60-140 lumens/watt, depending on the wattage of the bulb.[18] Plants grown under HPS lights tend to elongate from the lack of blue/ultraviolet radiation. Modern horticultural HPS lamps have a much better adjusted spectrum for plant growth. The majority of HPS lamps while providing good growth, offer poor color rendering index (CRI) rendering. As a result, the yellowish light of an HPS can make monitoring plant health indoors more difficult. CRI isn't an issue when HPS lamps are used as supplemental lighting in greenhouses which make use of natural daylight (which offsets the yellow light of the HPS). High-pressure sodium lights have a long usable bulb life, and six times more light output per watt of energy consumed than a standard incandescent grow light. Due to their high efficiency and the fact that plants grown in greenhouses get all the blue light they need naturally, these lights are the preferred supplemental greenhouse lights. But, in the higher latitudes, there are periods of the year where sunlight is scarce, and additional sources of light are indicated for proper growth. HPS lights may cause distinctive infrared and optical signatures, which can attract insects or other species of pests; these may in turn threaten the plants being grown. High-pressure sodium lights emit a lot of heat, which can cause leggier growth, although this can be controlled by using special air-cooled bulb reflectors or enclosures. Conversion bulbs are manufactured so they work with either a MH or HPS ballast. A grower can run an HPS conversion bulb on a MH ballast, or a MH conversion bulb on a HPS ballast. The difference between the ballasts is an HPS ballast has an igniter which ignites the sodium in an HPS bulb, while a MH ballast does not. Because of this, all electrical ballasts can fire MH bulbs, but only a Switchable or HPS ballast can fire an HPS bulb without a conversion bulb.[19] Usually a metal halide conversion bulb will be used in an HPS ballast since the MH conversion bulbs are more common. A switchable ballast is an HID ballast can be used with either a metal halide or an HPS bulb of equivalent wattage. So a 600W Switchable ballast would work with either a 600W MH or HPS.[10] Growers use these fixtures for propagating and vegetatively growing plants under the metal halide, then switching to a high-pressure sodium bulb for the fruiting or flowering stage of plant growth. To change between the lights, only the bulb needs changing and a switch needs to be set to the appropriate setting. Two plants growing under an LED grow light LED grow lights are composed of light-emitting diodes, usually in a casing with a heat sink and built-in fans. LED grow lights do not usually require a separate ballast and can be plugged directly into a standard electrical socket. LED grow lights vary in color depending on the intended use. It is known from the study of photomorphogenesis that green, red, far-red and blue light spectra have an effect on root formation, plant growth, and flowering, but there are not enough scientific studies or field-tested trials using LED grow lights to recommended specific color ratios for optimal plant growth under LED grow lights.[20] It has been shown that many plants will grow normally if given both red and blue light.[21][22][23] However, many studies indicate that red and blue light only provides the most cost efficient method of growth, plant growth is still better under light supplemented with green.[24][25][26] White LED grow lights provide a full spectrum of light designed to mimic natural light, providing plants a balanced spectrum of red, blue and green. The spectrum used varies, however, white LED grow lights are designed to emit similar amounts of red and blue light with the added green light to appear white. White LED grow lights are often used for supplemental lighting in home and office spaces. A large number of plant species have been assessed in greenhouse trials to make sure plants have higher quality in biomass and biochemical ingredients even higher or comparable with field conditions. Plant performance of mint, basil, lentil, lettuce, cabbage, parsley, carrot were measured by assessing health and vigor of plants and success in promoting growth. Promoting in profuse flowering of select ornamentals including primula, marigold, stock were also noticed.[27] In tests conducted by Philips Lighting on LED grow lights to find an optimal light recipe for growing various vegetables in greenhouses, they found that the following aspects of light affects both plant growth (photosynthesis) and plant development (morphology): light intensity, total light over time, light at which moment of the day, light/dark period per day, light quality (spectrum), light direction and light distribution over the plants. However it's noted that in tests between tomatoes, mini cucumbers and bell peppers, the optimal light recipe was not the same for all plants, and varied depending on both the crop and the region, so currently they must optimize LED lighting in greenhouses based on trial and error. They've shown that LED light affects disease resistance, taste and nutritional levels, but as of 2014 they haven't found a practical way to use that information.[28] Ficus plant grown under a white LED grow light. The diodes used in initial LED grow light designs were usually 1/3 watt to 1 watt in power. However, higher wattage diodes such as 3 watt and 5 watt diodes are now commonly used in LED grow lights. for highly compacted areas, COB chips between 10 watts and 100 watts can be used. Because of heat dissipation, these chips are often less efficient. LED grow lights should be kept at least 12 inches (30 cm) away from plants to prevent leaf burn.[13] Historically, LED lighting was very expensive, but costs have greatly reduced over time, and their longevity has made them more popular. LED grow lights are often priced higher, watt-for-watt, than other LED lighting, due to design features that help them to be more energy efficient and last longer. In particular, because LED grow lights are relatively high power, LED grow lights are often equipped with cooling systems, as low temperature improves both the brightness and longevity. LEDs usually last for 50,000 - 90,000 hours until LM-70 is reached.[citation needed] Fluorescent grow light Fluorescent lights come in many form factors, including long, thin bulbs as well as smaller spiral shaped bulbs (compact fluorescent lights). Fluorescent lights are available in color temperatures ranging from 2700 K to 10,000 K. The luminous efficacy ranges from 30 lm/W to 90 lm/W. The two main types of fluorescent lights used for growing plants are the tube-style lights and compact fluorescent lights. Fluorescent grow lights are not as intense as HID lights and are usually used for growing vegetables and herbs indoors, or for starting seedlings to get a jump start on spring plantings. A ballast is needed to run these types of fluorescent lights.[18] Standard fluorescent lighting comes in multiple form factors, including the T5, T8 and T12. The brightest version is the T5. The T8 and T12 are less powerful and are more suited to plants with lower light needs. High-output fluorescent lights produce twice as much light as standard fluorescent lights. A high-output fluorescent fixture has a very thin profile, making it useful in vertically limited areas. Fluorescents have an average usable life span of up to 20,000 hours. A fluorescent grow light produces 33-100 lumens/watt, depending on the form factor and wattage.[14] Dual spectrum compact fluorescent grow light. Actual length is about 40 cm (16 in) Standard Compact Fluorescent Light Compact Fluorescent lights (CFLs) are smaller versions of fluorescent lights that were originally designed as pre-heat lamps, but are now available in rapid-start form. CFLs have largely replaced incandescent light bulbs in households because they last longer and are much more electrically efficient.[18] In some cases, CFLs are also used as grow lights. Like standard fluorescent lights, they are useful for propagation and situations where relatively low light levels are needed. While standard CFLs in small sizes can be used to grow plants, there are also now CFL lamps made specifically for growing plants. Often these larger compact fluorescent bulbs are sold with specially designed reflectors that direct light to plants, much like HID lights. Common CFL grow lamp sizes include 125W, 200W, 250W and 300W. Unlike HID lights, CFLs fit in a standard mogul light socket and don't need a separate ballast.[10] Compact fluorescent bulbs are available in warm/red (2700 K), full spectrum or daylight (5000 K) and cool/blue (6500 K) versions. Warm red spectrum is recommended for flowering, and cool blue spectrum is recommended for vegetative growth.[10] Usable life span for compact fluorescent grow lights is about 10,000 hours.[18] A CFL produces 44-80 lumens/watt, depending on the wattage of the bulb.[14] Examples of lumens and lumens/watt for different size CFLs: Cold Cathode Fluorescent Light (CCFL) A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emissionalone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas. The color temperatures of different grow lights Different grow lights produce different spectrums of light. Plant growth patterns can respond to the color spectrum of light, a process completely separate from photosynthesis known as photomorphogenesis.[29] Natural daylight has a high color temperature (approximately 5000-5800 K). Visible light color varies according to the weather and the angle of the Sun, and specific quantities of light (measured in lumens) stimulate photosynthesis. Distance from the sun has little effect on seasonal changes in the quality and quantity of light and the resulting plant behavior during those seasons. The axis of the Earth is not perpendicular to the plane of its orbit around the sun. During half of the year the north pole is tilted towards sun so the northern hemisphere gets nearly direct sunlight and the southern hemisphere gets oblique sunlight that must travel through more atmosphere before it reaches the Earth's surface. In the other half of the year, this is reversed. The color spectrum of visible light that the sun emits does not change, only the quantity (more during the summer and less in winter) and quality of overall light reaching the Earth's surface. Some supplemental LED grow lights in vertical greenhouses produce a combination of only red and blue wavelengths.[30] The color rendering index facilitates comparison of how closely the light matches the natural color of regular sunlight. The ability of a plant to absorb light varies with species and environment, however, the general measurement for the light quality as it affects plants is the PAR value, or Photosynthetically Active Radiation. There have been several experiments using LEDs to grow plants, and it has been shown that plants need both red and blue light for healthy growth. From experiments it has been consistently found that the plants that are growing only under LEDs red (660 nm, long waves) spectrum growing poorly with leaf deformities, though adding a small amount of blue allows most plants to grow normally.[24] Several reports suggest that a minimum blue light requirement of 15-30 µmol·m−2·s−1 is necessary for normal development in several plant species.[23][31][32] LED panel light source used in an experiment on potato plant growth by NASA Many studies indicate that even with blue light added to red LEDs, plant growth is still better under white light, or light supplemented with green.[24][25][26] Neil C Yorio demonstrated that by adding 10% blue light (400 to 500 nm) to the red light (660 nm) in LEDs, certain plants like lettuce[21] and wheat[22] grow normally, producing the same dry weight as control plants grown under full spectrum light. However, other plants like radish and spinach grow poorly, and although they did better under 10% blue light than red-only light, they still produced significantly lower dry weights compared to control plants under a full spectrum light. Yorio speculates there may be additional spectra of light that some plants need for optimal growth.[21] Greg D. Goins examined the growth and seed yield of Arabidopsis plants grown from seed to seed under red LED lights with 0%, 1%, or 10% blue spectrum light. Arabidopsis plants grown under only red LEDS alone produced seeds, but had unhealthy leaves, and plants took twice as long to start flowering compared to the other plants in the experiment that had access to blue light. Plants grown with 10% blue light produced half the seeds of those grown under full spectrum, and those with 0% or 1% blue light produced one-tenth the seeds of the full spectrum plants. The seeds all germinated at a high rate under all light types tested.[23] Hyeon-Hye Kim demonstrated that the addition of 24% green light (500-600 nm) to red and blue LEDs enhanced the growth of lettuce plants. These RGB treated plants not only produced higher dry and wet weight and greater leaf area than plants grown under just red and blue LEDs, they also produced more than control plants grown under cool white fluorescent lamps, which are the typical standard for full spectrum light in plant research.[25][26] She reported that the addition of green light also makes it easier to see if the plant is healthy since leaves appear green and normal. However, giving nearly all green light (86%) to lettuce produced lower yields than all the other groups.[25] The National Aeronautics and Space Administration’s (NASA) Biological Sciences research group has concluded that light sources consisting of more than 50% green cause reductions in plant growth, whereas combinations including up to 24% green enhance growth for some species.[33] Green light has been shown to affect plant processes via both cryptochrome-dependent and cryptochrome-independent means. Generally, the effects of green light are the opposite of those directed by red and blue wavebands, and it's speculated that green light works in orchestration with red and blue.[34] Absorbance spectra of free chlorophyll a (blue) and b (red) in a solvent. The action spectra of chlorophyll molecules are slightly modified in vivo depending on specific pigment-protein interactions. A plant's specific needs determine which lighting is most appropriate for optimum growth. If a plant does not get enough light, it will not grow, regardless of other conditions. Most plants use chlorophyll which mostly reflects green light, but absorbs red and blue light well. Vegetables grow best in strong sunlight, and to flourish indoors they need sufficient light levels, whereas foliage plants (e.g. Philodendron) grow in full shade and can grow normally with much lower light levels. Grow lights usage is dependent on the plant's phase of growth. Generally speaking, during the seedling/clone phase, plants should receive 16+ hours on, 8- hours off. The vegetative phase typically requires 18 hours on, and 6 hours off. During the final, flower stage of growth, keeping grow lights on for 12 hours on and 12 hours off is recommended.[citation needed] In addition, many plants also require both dark and light periods, an effect known as photoperiodism, to trigger flowering. Therefore, lights may be turned on or off at set times. The optimum photo/dark period ratio depends on the species and variety of plant, as some prefer long days and short nights and others prefer the opposite or intermediate "day lengths". Much emphasis is placed on photoperiod when discussing plant development. However, it is the number of hours of darkness that affects a plant’s response to day length.[35] In general, a “short-day” is one in which the photoperiod is no more than 12 hours. A “long-day” is one in which the photoperiod is no less than 14 hours. Short-day plants are those that flower when the day length is less than a critical duration. Long-day plants are those that only flower when the photoperiod is greater than a critical duration. Day-neutral plants are those that flower regardless of photoperiod.[36] Plants that flower in response to photoperiod may have a facultative or obligate response. A facultative response means that a plant will eventually flower regardless of photoperiod, but will flower faster if grown under a particular photoperiod. An obligate response means that the plant will only flower if grown under a certain photoperiod.[37] Main article: Photosynthetically active radiation Weighting factor for photosynthesis. The photon-weighted curve is for converting PPFD to YPF; the energy-weighted curve is for weighting PAR expressed in watts or joules. Lux and lumens are commonly used to measure light levels, but they are photometric units which measure the intensity of light as perceived by the human eye. The spectral levels of light that can be used by plants for photosynthesis is similar to, but not the same as what's measured by lumens. Therefore, when it comes to measuring the amount of light available to plants for photosynthesis, biologists often measure the amount of photosynthetically active radiation (PAR) received by a plant.[38] PAR designates the spectral range of solar radiation from 400 to 700 nanometers, which generally corresponds to the spectral range that photosynthetic organisms are able to use in the process of photosynthesis. The irradiance of PAR can be expressed in units of energy flux (W/m2), which is relevant in energy-balance considerations for photosynthetic organisms. However, photosynthesis is a quantum process and the chemical reactions of photosynthesis are more dependent on the number of photons than the amount of energy contained in the photons.[38] Therefore, plant biologists often quantify PAR using the number of photons in the 400-700 nm range received by a surface for a specified amount of time, or the Photosynthetic Photon Flux Density (PPFD).[38] This is normally measured using mol m−2s−1. According to one manufacturer of grow lights, plants require at least light levels between 100 and 800 μmol m−2s−1.[39] For daylight-spectrum (5800 K) lamps, this would be equivalent to 5800 to 46,000 lm/m2. Best Rated Survival Foods With Long Shelf Life

Plant physiology

Jump to navigation Jump to search The ethnobotanist Richard Evans Schultes at work in the Amazon (~1940s) Ethnobotany is the study of a region's plants and their practical uses through the traditional knowledge of a local culture and people.[1] An ethnobotanist thus strives to document the local customs involving the practical uses of local flora for many aspects of life, such as plants as medicines, foods, and clothing.[2] Richard Evans Schultes, often referred to as the "father of ethnobotany",[3] explained the discipline in this way: Ethnobotany simply means ... investigating plants used by societies in various parts of the world.[4] Since the time of Schultes, the field of ethnobotany has grown from simply acquiring ethnobotanical knowledge to that of applying it to a modern society, primarily in the form of pharmaceuticals.[5] Intellectual property rights and benefit-sharing arrangements are important issues in ethnobotany.[6] Plants have been widely used by American Indian healers, such as this Ojibwa man. The idea of ethnobotany was first proposed by the early 20th century botanist John William Harshberger.[7] While Harshberger did perform ethnobotanical research extensively, including in areas such as North Africa, Mexico, Scandinavia, and Pennsylvania,[7] it was not until Richard Evans Schultes began his trips into the Amazon that ethnobotany become a more well known science.[8] However, the practice of ethnobotany is thought to have much earlier origins in the first century AD when a Greek physician by the name of Pedanius Dioscorides wrote an extensive botanical text detailing the medical and culinary properties of "over 600 mediterranean plants" named De Materia Medica.[2] Historians note that Dioscorides wrote about traveling often throughout the Roman empire, including regions such as "Greece, Crete, Egypt, and Petra",[9] and in doing so obtained substantial knowledge about the local plants and their useful properties. European botanical knowledge drastically expanded once the New World was discovered due to ethnobotany. This expansion in knowledge can be primarily attributed to the substantial influx of new plants from the Americas, including crops such as potatoes, peanuts, avocados, and tomatoes.[10] One French explorer in the 16th century, Jacques Cartier, learned a cure for scurvy (a tea made from boiling the bark of the Sitka Spruce) from a local Iroquois tribe.[11] During the medieval period, ethnobotanical studies were commonly found connected with monasticism. Notable at this time was Hildegard von Bingen. However, most botanical knowledge was kept in gardens such as physic gardens attached to hospitals and religious buildings. It was thought of in practical use terms for culinary and medical purposes and the ethnographic element was not studied as a modern anthropologist might approach ethnobotany today.[citation needed] Carl Linnaeus carried out in 1732 a research expedition in Scandinavia asking the Sami people about their ethnological usage of plants.[12] The age of enlightenment saw a rise in economic botanical exploration. Alexander von Humboldt collected data from the New World, and James Cook's voyages brought back collections and information on plants from the South Pacific. At this time major botanical gardens were started, for instance the Royal Botanic Gardens, Kew in 1759. The directors of the gardens sent out gardener-botanist explorers to care for and collect plants to add to their collections. As the 18th century became the 19th, ethnobotany saw expeditions undertaken with more colonial aims rather than trade economics such as that of Lewis and Clarke which recorded both plants and the peoples encountered use of them. Edward Palmer collected material culture artifacts and botanical specimens from people in the North American West (Great Basin) and Mexico from the 1860s to the 1890s. Through all of this research, the field of "aboriginal botany" was established—the study of all forms of the vegetable world which aboriginal peoples use for food, medicine, textiles, ornaments and more.[13] The first individual to study the emic perspective of the plant world was a German physician working in Sarajevo at the end of the 19th century: Leopold Glück. His published work on traditional medical uses of plants done by rural people in Bosnia (1896) has to be considered the first modern ethnobotanical work.[14] Other scholars analyzed uses of plants under an indigenous/local perspective in the 20th century: Matilda Coxe Stevenson, Zuni plants (1915); Frank Cushing, Zuni foods (1920); Keewaydinoquay Peschel, Anishinaabe fungi (1998), and the team approach of Wilfred Robbins, John Peabody Harrington, and Barbara Freire-Marreco, Tewa pueblo plants (1916). In the beginning, ethonobotanical specimens and studies were not very reliable and sometimes not helpful. This is because the botanists and the anthropologists did not always collaborate in their work. The botanists focused on identifying species and how the plants were used instead of concentrating upon how plants fit into people's lives. On the other hand, anthropologists were interested in the cultural role of plants and treated other scientific aspects superficially. In the early 20th century, botanists and anthropologists better collaborated and the collection of reliable, detailed cross-disciplinary data began. Beginning in the 20th century, the field of ethnobotany experienced a shift from the raw compilation of data to a greater methodological and conceptual reorientation. This is also the beginning of academic ethnobotany. The so-called "father" of this discipline is Richard Evans Schultes, even though he did not actually coin the term "ethnobotany". Today the field of ethnobotany requires a variety of skills: botanical training for the identification and preservation of plant specimens; anthropological training to understand the cultural concepts around the perception of plants; linguistic training, at least enough to transcribe local terms and understand native morphology, syntax, and semantics. Mark Plotkin, who studied at Harvard University, the Yale School of Forestry and Tufts University, has contributed a number of books on ethnobotany. He completed a handbook for the Tirio people of Suriname detailing their medicinal plants; Tales of a Shaman's Apprentice (1994); The Shaman's Apprentice, a children's book with Lynne Cherry (1998); and Medicine Quest: In Search of Nature's Healing Secrets (2000). Plotkin was interviewed in 1998 by South American Explorer magazine, just after the release of Tales of a Shaman's Apprentice and the IMAX movie Amazonia. In the book, he stated that he saw wisdom in both traditional and Western forms of medicine: No medical system has all the answers—no shaman that I've worked with has the equivalent of a polio vaccine and no dermatologist that I've been to could cure a fungal infection as effectively (and inexpensively) as some of my Amazonian mentors. It shouldn't be the doctor versus the witch doctor. It should be the best aspects of all medical systems (ayurvedic, herbalism, homeopathic, and so on) combined in a way which makes health care more effective and more affordable for all.[15] A great deal of information about the traditional uses of plants is still intact with tribal peoples.[16] But the native healers are often reluctant to accurately share their knowledge to outsiders. Schultes actually apprenticed himself to an Amazonian shaman, which involves a long-term commitment and genuine relationship. In Wind in the Blood: Mayan Healing & Chinese Medicine by Garcia et al. the visiting acupuncturists were able to access levels of Mayan medicine that anthropologists could not because they had something to share in exchange. Cherokee medicine priest David Winston describes how his uncle would invent nonsense to satisfy visiting anthropologists.[17] Another scholar, James W. Herrick, who studied under ethnologist William N. Fenton, in his work Iroquois Medical Ethnobotany (1995) with Dean R. Snow (editor), professor of Anthropology at Penn State, explains that understanding herbal medicines in traditional Iroquois cultures is rooted in a strong and ancient cosmological belief system.[18] Their work provides perceptions and conceptions of illness and imbalances which can manifest in physical forms from benign maladies to serious diseases. It also includes a large compilation of Herrick’s field work from numerous Iroquois authorities of over 450 names, uses, and preparations of plants for various ailments. Traditional Iroquois practitioners had (and have) a sophisticated perspective on the plant world that contrast strikingly with that of modern medical science.[19] Many instances of gender bias have occurred in ethnobotany, creating the risk of drawing erroneous conclusions.[20][21][22] Other issues include ethical concerns regarding interactions with indigenous populations, and the International Society of Ethnobiology has created a code of ethics to guide researchers.[23]

Survival Tips for Survival Dispatch Get Home Bag